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ON A THEOREM OF MORIMOTO CONCERNING SUFFICIENCY 
FOR DISCRETE DISTRIBUTIONS' 

BY L. BROWN 

Cornell University 

We prove in a discrete setting that if for all test functions, t, there is 
a B measurable test function, s, such that Ep(t) _ Ep(s) for all p e P then 
some subfield of B is sufficient for P. 

The purpose of this note is to call attention to the fact that the conclusion of 
Theorem 5 of Morimoto (1972) can be strengthened. In the following we use 
the notation and definitions of Morimoto (1972). In particular, P is a family of 
discrete distributions on a set X and all subsets of X are measurable. We assume 
as in Morimoto (1972) that p(A) = 0 for all p e P implies A = 0 . 

The strengthened version of Morimoto's Theorem 5 is as follows: 

THEOREM. Let B be a a-field such that for any test function t(x) there is a B 
measurable test function s(x) with E(t(x) p) = E(s(x) p) for all p e P. Then B 
contains a sufficient subfield, i.e., B > B(M). 

(Morimoto's conclusion is that T(B) > M which implies that B is pairwise 
sufficient, but not that B is sufficient.) 

PROOF. Write P = {p,: o e Q} where Q is a well-ordered set. The collection 
of subsets (M) defined in Morimoto (1972) may be rewritten using a transfinite 
induction as 

(1) M-{TT,i: i=1,2, I.,I,,?oo} 

where 

(2) p(x) > 0 for all xe U 1 T, and P.,(U, , 'T,U ) =1 i 

and the sets T, are mutually disjoint. (The statement I. < oo above is intended 
to mean that the index set {i} is countable, but possibly infinite.) 

Now, V e B(M) if and only if V may be written 

V = U.EOD U iI(w) Twi-U7-= UweU T i 

where Q, c Q, j = 0, 1, .... In order to prove that B > B(M) it therefore 
suffices to prove that any set of the form 

Q = U . T.w 

satisfies Q e B, where Q' c Q and T. = T,.,,(.). 
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As a consequence of the characterization described in (7) of Morimoto (1972) 
and of our definition (2) each set T. may be written in the form 

(3) T, = tx: p,(x) > 0, pAx) = O Vt < w, 

and p,(x) = kip(,(x); i = 1,2,.Iw, , oo} 

where ki > 0 and wi > cl. (Note that the indices wi depend on w, although this 
is not indicated by the notation.) After defining 0/0 = 0 we may rewritten (3) as 

(4) T, = {x: p,(x)/> _1 a ki pw,(x) = 1 V{a} 3 ai > 0 Lf , =j 1 

and p,(x) = V < }. 

We now prove 

LEMMA. There exists a vector (al, ** ) in the simplex defined in (4) which satisfies 

(5) x Tp(x)/ 1Zf , 1 and pe(x)=O V <w. 

PROOF. Consider the metric space, M, consisting of points (a1, ** , ai, ** ), 

i = 1, * I,,', satisfying 0 ? a% < max (2-i, 2-iki-1); and with metric, p, given 
from the sup (Loo) norm: p(a, j9) = sup {Iai - B3: i = 1, * , I,,'}. This is a 
complete metric space. 

If x V U u T,,,i then either p (x) = 0 for all e < cl or pj(x) = 0 so that the 
r.h.s. of (5) cannot hold true. 

For given x CD = U f1 T, - T. let S. denote the set of points in M which 
satisfy p,(x) ZIW' a ai ki pap.j(x). For x e D. pj(x) > 0 and there is some 
index, wi , say, such that pj(x) ki p,,,.(x). It follows that if 3 E S. and /3' satisfies 

I = i for i * ao and 3' i j3 then ,B' 2 S,. Hence the interior of S. is empty. 
The fact that ai < max (2-i, 2-ikj-1p,'(x)) and the dominated convergence 

theorem lead to the conclusion that S. is closed in M. Since D', is countable 
the Baire category theorem may then be invoked to establish the existence of a 
point a' e M such that p,(x) E f"j ai A 'j ai'ki p,(x), for all x E D.. The 
vector a" = a'/DTij ai' is in the simplex described in (4) and satisfies the con- 
clusion of (5). g 

Fix any vector in the simplex which satisfies (5). Then T. = R.,- S. where 

R= {x: p.(x)/l f'aiki P,,(x) > 1 and p(x) = 0 Ve <w} c Ut -1Ti,. 

and 
S= {x: p.(x)/1Ej aik p.,(x) > 1 and p(x) = 0 Vt < } . 

Note that if pj(x) > 0 and p(x) > 0 for some e < w then p,(x)/lpj(x) < 1 for I 
sufficiently large. Since {x: pj(x) > 0} is countable we may thus rewrite R. as 

= {x: 
p.(x)/[ E -'caoi ki p,.(x) + , 

l1p,j(x)] > I} 

where the Ej satisfy dj < co and the i, are suitable positive constants and 0 < 

J. < oo. S_ has a similar expression. Hence 

(6) Q = U,e ,(R,Sj) . 
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Since S,,, c R. for all w e Q' and since for wo # w'(U I-w1 T@i) n (U T., Ti) = 0 
we have R,. n RW, = 0 for all o, w' e Q2' with co' # a). The expression (6) may 
thus be rewritten as 

(7) Q = Uwe0' R,,- U Se.. sW 

To prove the theorem it therefore suffices to show that any set of the form 
Uwea R. or U,., 5, S. is an element of B. 

Let W' = UweO' A(p@) = {x: p,,,(x) > 0 for some wcl e Q}. 
Let t-= Xu wen R and let s be the B measurable function generated by the 

hypothesis of the theorem such that E(s I p) = E(t I p) for all p e P. t' = t is the 
essentially unique test function relative to the measure given by pW,, + E aiZkip,, + 
L l1pe maximizing E(t' I P,) subject to the side conditions 

E(t' Ip.,,) < E(tIP,) and E(t'Ipe.) < E(tIpej) 
i= 1, *.,,]= 1, I J. 

Hence s(x) = t(x) for all x e W'. 
Since t(x) - 0 for x o W' we thus have s(x) > t(x) for all x e X. Suppose 

s(x) > t(x) for some x e X. Then, for some ph,,, pW,,(x) > 0 and E(s I P,) > E(t I P,), 
a contradiction. 

It follows that s(x) = t(x) for all x so that U.,, ,, R, e B. Similarly U., ej S.W e B 
(use the fact that B is a a-field). As described above this proves that B > B(M), 
which is the desired conclusion. 
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